Search results for "intracellular ph"

showing 10 items of 37 documents

A secondary mode of action of the herbicide lenacil: Modification of K+ permeability of Acer pseudoplatanus cells

1984

Abstract The action of lenacil on plasmalemma permeability to K+, transmembrane electric potential difference (PD) calculated from the tetraphenylphosphonium distribution, proton extrusion and intracellular pH of Acer pseudoplatanus cells calculated from the 5,5-dimethyloxazolidine,4-dione distribution, was studied and compared with the action of fusicoccin (FC) and diethylstilbestrol (DES). The three compounds temporarily stimulated the rate of 86Rb+ uptake with a half-maximum effect at 5.0 μM for 3-cyclohexyl-6, 7-dihdro-1H-cyclopentapyrimidine-2,4(3H,5H)-dione (lenacil). Lenacil and FC had no action on transmembrane electric potential difference, whereas DES decreased it. Lenacil inhibit…

0106 biological sciencesAbsorption (pharmacology)Stereochemistry[SDV]Life Sciences [q-bio]Intracellular pHKineticsSoil Science01 natural sciences03 medical and health scienceschemistry.chemical_compoundMode of actionComputingMilieux_MISCELLANEOUS030304 developmental biologyMembrane potential0303 health sciencesbiologyChemistryERABLE FAUX PLATANEAcer pseudoplatanusbiology.organism_classification[SDV] Life Sciences [q-bio]Permeability (electromagnetism)FusicoccinBiophysicsAgronomy and Crop Science010606 plant biology & botanyPlant Science Letters
researchProduct

2019

The effects of ionotropic γ-aminobutyric acid receptor (GABA-A, GABAA) activation depends critically on the Cl−-gradient across neuronal membranes. Previous studies demonstrated that the intracellular Cl−-concentration ([Cl−]i) is not stable but shows a considerable amount of activity-dependent plasticity. To characterize how membrane properties and different molecules that are directly or indirectly involved in GABAergic synaptic transmission affect GABA-induced [Cl−]i changes, we performed compartmental modeling in the NEURON environment. These simulations demonstrate that GABA-induced [Cl−]i changes decrease at higher membrane resistance, revealing a sigmoidal dependency between both par…

0301 basic medicineGABAA receptorChemistryIntracellular pHOrganic ChemistryGeneral MedicineNeurotransmissionCatalysisComputer Science ApplicationsInorganic Chemistry03 medical and health sciences030104 developmental biology0302 clinical medicineMembranenervous systemGiant depolarizing potentialsBiophysicsPhysical and Theoretical ChemistryReceptorMolecular Biology030217 neurology & neurosurgerySpectroscopyIntracellularIonotropic effectInternational Journal of Molecular Sciences
researchProduct

Proton Pump Inhibitors Display Antitumor Effects in Barrett's Adenocarcinoma Cells

2016

Recent evidence has reported that proton pump inhibitors (PPIs) can exert antineoplastic effects through the disruption of pH homeostasis by inhibiting vacuolar ATPase (H+-VATPase), a proton pump overexpressed in several tumor cells, but this aspect has not been deeply investigated in EAC yet. In the present study, the expression of H+-VATPase was assessed through the metaplasia-dysplasia-adenocarcinoma sequence in Barrett’s esophagus (BE) and the antineoplastic effects of PPIs and cellular mechanisms involved were evaluated in vitro. H+-VATPase expression was assessed by immunohistochemistry in paraffined-embedded samples or by immunofluorescence in cultured BE and EAC cell lines. Cells we…

0301 basic medicineesophageal adenocarcinomaIntracellular pHvacuolar ATPaseBiologymedicine.disease_causeBarrett's esophagus03 medical and health sciencesmedicineBarrett’s esophagusCytotoxic T cellPharmacology (medical)Original Researchreactive oxygen speciesPharmacologychemistry.chemical_classificationReactive oxygen specieslcsh:RM1-950AutophagyProton Pump InhibitorsIn vitrolcsh:Therapeutics. Pharmacology030104 developmental biologyBiochemistrychemistryCell cultureApoptosisCancer researchEsophageal adenocarcinomaproton pump inhibitorsReactive Oxygen SpeciesOxidative stressFrontiers in Pharmacology
researchProduct

Role of the tumor microenvironment in the activity and expression of the p-glycoprotein in human colon carcinoma cells.

2006

The metabolic microenvironment of solid tumors is characterized by an oxygen deficiency and increased anaerobic glycolysis leading to extracellular acidosis and ATP depletion, which in turn may affect other energy-dependent cellular pathways. Since many tumors overexpress active drug transporters (e.g. the p-glycoprotein) leading to a multidrug-resistant phenotype, this study analyzes the impact of the different aspects of the extracellular microenvironment (hypoxia and acidosis) on the activity and expression of the p-glycoprotein (pGP) in the human colon carcinoma cell line LS513. For up to 24 h cells were exposed to hypoxia (pO2<0.5 mmHg), an acidic extracellular environment (pH 6.6), or…

Cancer Researchmedicine.medical_specialtyIntracellular pHInternal medicineCell Line TumormedicineExtracellularHumansATP Binding Cassette Transporter Subfamily B Member 1P-glycoproteinAcidosisTumor microenvironmentbiologyDaunorubicinBiological activityGeneral MedicineHydrogen-Ion ConcentrationCell HypoxiaEndocrinologyOncologyAnaerobic glycolysisbiology.proteinCancer researchEffluxmedicine.symptomAcidosisColorectal NeoplasmsOncology reports
researchProduct

SCD5-induced oleic acid production reduces melanoma malignancy by intracellular retention of SPARC and cathepsin B

2015

A proper balance between saturated and unsaturated fatty acids (FAs) is required for maintaining cell homeostasis. The increased demand of FAs to assemble the plasma membranes of continuously dividing cancer cells might unbalance this ratio and critically affect tumour outgrowth. We unveiled the role of the stearoyl-CoA desaturase SCD5 in converting saturated FAs into mono-unsaturated FAs during melanoma progression. SCD5 is down-regulated in advanced melanoma and its restored expression significantly reduced melanoma malignancy, both in vitro and in vivo, through a mechanism governing the secretion of extracellular matrix proteins, such as secreted protein acidic and rich in cysteine (SPAR…

CathepsinbiologyIntracellular pHCellCathepsin BPathology and Forensic Medicinemedicine.anatomical_structureBiochemistryCancer cellbiology.proteinmedicineSecretionOsteonectinIntracellularThe Journal of Pathology
researchProduct

Fluorescent probes to evaluate the physiological state and activity of microbial biocatalysts: A guide for prokaryotic and eukaryotic investigation

2008

International audience; Many fluorescent techniques are employed to evaluate the viability and activity of microbial cells used in biotechnology. These techniques are sometimes complex and the interpretation of results opened to misunderstanding. Moreover, new developments are constantly proposed especially concerning a more accurate evaluation of the state of the cells including eukaryotic microorganisms. This paper aims at presenting to biotechnologists unfamiliar with fluorescence the principles of these methods and the related possible pitfalls. It focuses on probes of the physical (integrity and fluidity) and energetical (intracellular pH and membrane potential) state of the cell membr…

Cell Membrane PermeabilityMembrane FluidityMESH : Microscopy FluorescenceMESH : Cell MembraneIntracellular pHMESH : Membrane FluidityBiologyApplied Microbiology and BiotechnologyMembrane PotentialsCell membraneIndustrial MicrobiologyMESH : Hydrogen-Ion ConcentrationYeastsGram-Negative BacteriamedicineMESH : Membrane PotentialsMESH : Fluorescent DyesFluorescent DyesMESH : YeastsMESH : Spectrometry FluorescenceCell Membrane[ SDV.BIO ] Life Sciences [q-bio]/BiotechnologyGeneral MedicineHydrogen-Ion ConcentrationMESH : Gram-Negative BacteriaMESH : Industrial MicrobiologyFluorescenceYeastSpectrometry Fluorescencemedicine.anatomical_structureMicroscopy FluorescenceBiochemistryMESH : Cell Membrane PermeabilityNucleic acidMolecular MedicineBiotechnology Journal
researchProduct

Effects of Zizyphus lotus L. (Desf.) polyphenols on Jurkat cell signaling and proliferation.

2013

We assessed the effects of Zizyphus lotus L. (Desf.) polyphenols (ZLP) on T-cell signaling and proliferation. Our results showed that ZLP exerted no effect on the increases in intracellular free calcium concentrations, [Ca(2+)]i, in human Jurkat T-cells. However, ZLP modulated the thapsigargin-induced increases in [Ca(2+)]i in these cells. ZLP treatment was found to decrease the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). In addition, ZLP induced a rapid (t1/2=33s) and dose-dependent decrease in intracellular pH (pHi) in human Jurkat T-cells. Furthermore, ZLP significantly curtailed T-cell proliferation by diminishing their progression from S to G2/M phase of cell…

Cell signalingIntracellular pHT-LymphocytesImmunologychemistry.chemical_elementCalciumBiologyJurkat cellsJurkat CellsExtracellularImmunology and AllergyHumansCalcium SignalingRNA MessengerExtracellular Signal-Regulated MAP KinasesCell ProliferationPharmacologyImmunosuppression TherapyInflammationKinasePolyphenolsZiziphusCell cycleCell biologyBiochemistrychemistryGene Expression RegulationFruitPhosphorylationInterleukin-2ThapsigarginInternational immunopharmacology
researchProduct

Intracellular pH-dependent efflux of the fluorescent probe pyranine in the yeast Yarrowia lipolytica.

2001

International audience; 8-Hydroxypyrene-1,3,6-trisulfonic acid (pyranine) can be used as a vital intracellular pH (pH(i)) indicator. In the yeast Yarrowia lipolytica, a partial efflux of the probe was detected by using the pH-independent wavelength of 415 nm. A simplified correction of the fluorescent signals was applied, enabling to show for this species a good near-neutral pH(i) maintenance capacity in a pH 3.9 medium. Octanoic acid, which is known to have toxic effects on yeast, decreased the pH(i) and increased the 260-nm-absorbing compounds leakage. However, this acid inhibited the fluorescent probe efflux linearly with its concentration suggesting a pH(i)-dependent efflux of pyranine …

CytoplasmMESH: Hydrogen-Ion ConcentrationCell Membrane Permeability[SDV.BIO]Life Sciences [q-bio]/BiotechnologyOctanoic Acidschemistry.chemical_compoundMESH : Fluorescent DyesMESH: Cell Membrane PermeabilityArylsulfonates[INFO.INFO-BT]Computer Science [cs]/BiotechnologyMESH: ArylsulfonatesMESH : Octanoic AcidsbiologyCaprylic acidHydrogen-Ion ConcentrationMESH: Fluorescent DyesFluorescenceBiochemistryEffluxCaprylates[ INFO.INFO-BT ] Computer Science [cs]/BiotechnologyIntracellularMESH : CytoplasmIntracellular pHMESH: Biological Transport[SDV.BC]Life Sciences [q-bio]/Cellular BiologyMicrobiologyPyranineMESH : ArylsulfonatesMESH : Hydrogen-Ion ConcentrationGeneticsMESH: SaccharomycetalesMolecular Biology[SDV.BC] Life Sciences [q-bio]/Cellular BiologyFluorescent Dyes[ SDV.BC ] Life Sciences [q-bio]/Cellular BiologyMESH: Cytoplasm[ SDV.BIO ] Life Sciences [q-bio]/BiotechnologyYarrowiaBiological TransportMESH : Saccharomycetalesbiology.organism_classificationMESH: Octanoic AcidsYeast[SDV.BIO] Life Sciences [q-bio]/BiotechnologyMESH : Biological Transport[INFO.INFO-BT] Computer Science [cs]/BiotechnologychemistryMESH : Cell Membrane PermeabilitySaccharomycetales
researchProduct

Effect of intracellular P content on phosphate removal in Scenedesmus sp. Experimental study and kinetic expression

2014

The present work determines the effect of phosphorus content on phosphate uptake rate in a mixed culture of Chlorophyceae in which the genus Scenedesmus dominates. Phosphate uptake rate was determined in eighteen laboratory batch experiments, with samples taken from a progressively more P-starved culture in which a minimum P content of 0.11% (w/w) was achieved. The results obtained showed that the higher the internal biomass P content, the lower the phosphate removal rate. The highest specific phosphate removal rate was 6.5 mgPO4 P gTSS -1 h -1 . Microalgae with a P content around 1% (w/w) attained 10% of this highest removal rate, whereas those with a P content of 0.6% (w/w) presented 50% …

Environmental EngineeringIntracellular SpaceBioengineeringWastewaterPhosphateschemistry.chemical_compoundPolyphosphatesBotanyMicroalgaeBiomassFood sciencePhosphate uptakeWaste Management and DisposalTECNOLOGIA DEL MEDIO AMBIENTEScenedesmusbiologyRenewable Energy Sustainability and the EnvironmentModelingPhosphorusGeneral MedicineModels Theoreticalbiology.organism_classificationPhosphateIntracellular phosphorus contentKineticsBiodegradation EnvironmentalchemistryBatch Cell Culture TechniquesChristian ministryIntracellularScenedesmusBioresource Technology
researchProduct

Chloride, carboxylate and carbonate transport by ortho-phenylenediamine-based bisureas

2013

Highly potent but structurally simple transmembrane anion transporters are reported that function at receptor to lipid ratios as low as 1 : 1 000 000. The compounds, based on the simple ortho-phenylenediamine-based bisurea scaffold, have been studied for their ability to facilitate chloride/nitrate and chloride/bicarbonate antiport, and HCl symport processes using a combination of ion selective electrode and fluorescence techniques. In addition, the transmembrane transport of dicarboxylate anions (maleate and fumarate) by the compounds was examined. Molecular dynamics simulations showed that these compounds permeate the membrane more easily than other promising receptors corroborating the e…

GLUTAMATE TRANSPORTERSSTEROID-BASED RECEPTORSAntiporterBicarbonateMOLECULAR RECOGNITIONISOMERIC DICARBOXYLATE ANIONS010402 general chemistry01 natural sciencesChlorideIon selective electrodechemistry.chemical_compoundmedicineOrganic chemistryCarboxylate010405 organic chemistryGeneral ChemistryIN-VITROMembrane transportSELECTIVE DISCRIMINATIONTRANSMEMBRANE ANION TRANSPORTERSCombinatorial chemistryMEMBRANE TRANSPORTERS0104 chemical sciences3. Good healthMembranechemistryCONFORMATIONAL CONTROLINTRACELLULAR PHEffluxmedicine.drug
researchProduct